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Sleep improves cognition and is nec-
essary for normal brain plasticity, 

but the precise cellular and molecular 
mechanisms mediating these effects are 
unknown. At the molecular level, expe-
rience-dependent synaptic plasticity trig-
gers new gene and protein expression 
necessary for long-lasting changes in 
synaptic strength.1 In particular, transla-
tion of mRNAs at remodeling synapses is 
emerging as an important mechanism in 
persistent forms of synaptic plasticity in 
vitro and certain forms of memory con-
solidation.2 We have previously shown 
that sleep is required for the consolida-
tion of a canonical model of in vivo plas-
ticity (i.e., ocular dominance plasticity 
[ODP] in the developing cat).3 Using 
this model, we recently showed that pro-
tein synthesis during sleep participates 
in the consolidation process. We demon-
strate that activation of the mammalian 
target of rapamycin [mTOR] pathway, 
an important regulator of translation 
initiation,4 is necessary for sleep-depen-
dent ODP consolidation and that sleep 
promotes translation (but not transcrip-
tion) of proteins essential for synaptic 
plasticity (i.e., ARC and BDNF). Our 
study thus reveals a previously unknown 
mechanism operating during sleep that 
consolidates cortical plasticity in vivo.

Experience-dependent plasticity involves 
gene expression that is highly regulated at 
both the transcriptional and translational 
levels. In particular, regulation at the 
translational step has become an impor-
tant mechanism allowing spatial fine-
tuning of protein expression and input 
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specific synaptic plasticity, unlike tran-
scription that is confined to the nucleus.1 
Translational machinery (ribosomes, 
mRNA, translation factors) is present in 
axons and dendrites and allows neurons 
to adapt their response to environmen-
tal stimulation by changing their pro-
teomic profile locally.5 The importance 
of protein synthesis in the consolidation 
of synaptic plasticity and memory has 
long been recognized.6,7 More recently 
substantial progress has been made in 
indentifying the molecular mechanisms 
that regulate activity-dependent protein 
synthesis. Most steps of translation (ini-
tiation, elongation and mRNA sequestra-
tion [e.g., mRNA binding proteins]) have 
been implicated in plasticity-dependent 
translation regulation.8,9 One critical step 
involved in this process is the initiation 
step, mostly controlled by the mTOR 
pathway.4,10 mTOR, via its direct down-
stream target, eukaryotic initiation factor 
4E (eIF4E)-binding protein 1 (4E-BP1), 
regulates the translation initiation of 5' 
capped mRNA (which comprises most of 
the mRNA in the cell).10 Previous studies 
have shown that sleep promotes transcrip-
tion of mRNA involved in translation 
regulation,11,12 but whether those factors 
are activated during sleep is not known. 
It is also known that sleep, especially deep 
slow-wave sleep,13,14 is correlated with 
increased protein synthesis, but to date no 
specific function has been associated with 
this phenomenon.

ODP is a classic form of plasticity in 
vivo that refers to physiological and ana-
tomical changes in visual cortical circuits 
triggered by transiently blocking patterned 
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adult rodents12 (Fig. 2). However levels 
of the corresponding proteins transiently 
increased during the same time period in 
total protein extracts as well as in synaptic 
enriched protein fractions (i.e., synapto-
neursome) (Fig. 2), demonstrating selec-
tive activation of protein synthesis during 
sleep. In the visual cortex, transcription 
of the immediate early gene (IEG) arc is 
triggered by visual input. This suggested 
that the decreased level of transcripts 
observed after sleep might also be an indi-
rect consequence of reduced visual input. 
This was confirmed as transcription of 
another important IEG, c-fos, decreased in 
a similar manner during sleep, and both 
transcripts were similarly reduced by sim-
ply blocking binocular vision in an awake 
animal.

Collectively, these findings are impor-
tant for the following reasons. First, they 
demonstrate that transcriptional changes 
are not necessarily mimicked, at the func-
tional level, by changes of the correspond-
ing proteins. This may be especially true 
for forms of synaptic plasticity that involve 

occurs only during sleep. We also find 
that mTOR inhibition during sleep 
impairs both potentiation of the open eye 
and depression of the deprived eye visual 
pathways (Fig. 1). This confirms previous 
findings in in vitro models showing the 
importance of protein synthesis for sta-
bilization of both weakening (e.g., long-
term depression) and strengthening (e.g., 
long-term potentiation) of synapses and 
demonstrates the requirement for mTOR 
during sleep in both processes.19

Considerable effort has been focused 
on identifying mRNAs that undergo 
rapid translation in response to synaptic 
activation.20 Most mRNAs identified in 
neuronal processes (i.e., dendrites and 
axons) have important functions in syn-
aptic plasticity. This includes plasticity 
related genes such as arc and bdnf. In our 
recent report we show that sleep differen-
tially affects transcription and translation 
of these genes. Using quantitative PCR 
in visual cortical tissue, we show that 
the mRNA level of both genes decreased 
during sleep, as described in studies in 

vision in one eye (monocular deprivation, 
Figure 1).15 This type of brain plasticity 
is considered physiological because in 
contrast to electrically evoked potentials 
or tetanic stimulation, it is triggered by 
alterations of natural sensory input. It 
also involves various types of synaptic 
plasticity (Hebbian and non-Hebbian16), 
many of which require de novo protein 
synthesis to be consolidated. We have pre-
viously shown that ODP can be divided 
temporally into an induction phase (dur-
ing waking) and a consolidation phase 
(during sleep) involving cellular mecha-
nisms of depression and potentiation of 
the deprived and the non-deprived visual 
pathways, respectively (Fig. 1).3,17 In our 
recent study,18 we now show that inhibi-
tion of mTOR-dependent protein synthe-
sis during sleep impairs the consolidation 
of ODP (Fig.  1). Remarkably, mTOR 
inhibition during wake does not affect 
the induction phase of ODP. This first 
finding is important because it suggests 
that, at a functional level, protein syn-
thesis necessary for ODP consolidation 

Figure 1. Protein synthesis is required for sleep-dependent ocular dominance plasticity (ODP). (A) In developing cats with normal vision, most 
neurons in the primary visual cortex (V1) are binocular (i.e. equally responsive to inputs from either eye, represented as the yellow area). (B) When 
animals are deprived of patterned visual input in one eye (i.e. monocular deprivation) most neurons in V1 become responsive only to stimulation of 
the non-deprived eye (NDE). This process is induced very rapidly in awake cats (6 h) and is enhanced/consolidated by subsequent sleep (6 h). To test 
the role of mTOR in sleep-dependent ODP, visual cortices are infused with vehicle or the selective mTOR inhibitor rapamycin during the post-MD sleep 
period. (C) Sleep-dependent ODP is intact in the vehicle infused hemispheres and includes a maintenance of depression of the DE visual input (dotted 
red line) and potentiation of the NDE input (thick red line). (D) Inhibition of protein synthesis in V1 with rapamycin during post-MD sleep blocks sleep-
dependent ODP. This reflects inhibition of both plastic changes normally observed after sleep (the weakening of the DE and the strengthening of NDE 
inputs). This results in a V1 plasticity phenotype that is normally seen after the initial 6 h of monocular deprivation only in awake animal (compare B 
and D).
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for this research is to discover which genes 
are actively translated during sleep.

These findings provide a new way 
to investigate sleep function and raise a 
number of exciting questions. The first is 
to determine the exact location of sleep-
dependent protein synthesis. Our results 
suggest that translation mechanisms are 
activated at synapses because most of the 
protein changes we detect occur in syn-
aptoneurosomes. But these results have 
to be confirmed and extended to a wider 
panel of candidate proteins that are trans-
lated in an activity-dependent manner 
(e.g., MAP1b, tissue-plasminogen acti-
vator). Second, our results suggest that 
specific proteins (e.g., ARC and BDNF) 
are produced during sleep and not others 
(e.g., αCaMKII and GlurI). This could 
be explained by the fact that sleep pro-
motes the translation of specific pools of 
mRNAs. The underlying mechanisms are 
likely to be complex. For example, RNA-
binding proteins are important translation 

translation initiation (via increased phos-
phorylation of the mTOR target 4E-BP1), 
it also decreased protein elongation (via 
phosphorylation of the eukaryote elonga-
tion factor 2 [eEF2]) (Fig. 2). This may 
seem paradoxical (i.e., enhanced initiation 
and decreased elongation rate), but similar 
events are triggered during synaptic plas-
ticity in vitro25,26 and in vivo27,28 and may 
promote the translation of specific subsets 
of mRNAs (e.g., ARC29) (Fig. 2). This 
was supported by our results showing that 
translation of plasticity related genes other 
than ARC and BDNF, such as αCamKII 
or GlurI, was not affected by sleep. We fur-
ther confirmed that the molecular changes 
observed at the translational level (i.e., 
increased BDNF and ARC protein expres-
sion and translation factors phosphory-
lation) were specific to sleep as they did 
not occur in animals instead kept awake 
after monocular deprivation. Therefore an 
important and exciting future direction 

translation in the consolidation process. 
Second, they suggest that some transcrip-
tional changes ascribed to sleep might be 
epiphenomena, rather than reflecting an 
active process. This is important because 
genome wide screening methods have 
been extensively used to clarify the role of 
sleep in brain function11,12,21 and current 
hypotheses on sleep function are based on 
changes in transcriptomes.11,22 Of course, 
more comprehensive studies examining a 
wider-array of genes, their proteins and 
activity-dependent transcription mecha-
nisms (e.g., CREB-dependent transcrip-
tion) are needed. Several studies have 
shown that sleep (especially REM sleep) 
may promote rapid gene transcription23,24 
and that several important gene groups are 
transcribed during sleep.11,12 This indicates 
that while the transcription of some genes 
is not actively regulated by sleep, this may 
not be universally true for others.

Interestingly, sleep following mon-
ocular deprivation, not only induced 

Figure 2. Molecular evidence of protein synthesis regulation during sleep. During wake, the induction of ocular dominance plasticity (monocular de-
privation) triggers activity-dependent transcription of selected genes (e.g., arc, bdnf, c-fos) in V1. Subsequent sleep activates a cascade of translational 
events (increased translation initiation via 4E-BP1 phosphorylation and reduced global elongation via eEF2 phosphorylation) leading to a net increase 
in translation initiation of subsets of mRNA. Arc and bdnf are two examples of important plasticity-related genes where transcription is decreased and 
translation is increased during sleep.
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behavioral brain states (sleep vs. wake) 
participate in general mRNA transport 
and translation is central to understand-
ing how miscues in translation regulation 
contribute to neurological diseases.
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